

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 33

http://www.moderntechno.de/index.php/meit/article/view/meit29-01-056
DOI: 10.30890/2567-5273.2023-29-01-056

QUALITY ATTRIBUTES AND ARCHITECTURAL PATTERNS OF
MODERN MOBILE APPS

Bilohub Dmytro
2nd-year master’s degree student, Software Engineering

Skrypchenko Mykyta
2nd-year master’s degree student, Software Engineering

Tytenko Sergiy
Ph.D., Associate Professor

 ORCID: 0000-0002-7548-9053
American University Kyiv, Ukraine, Kyiv, Poshtova Pl. 3, 02000

Abstract. When embarking on the development of a mobile application, the initial step is the

selection of the appropriate architectural framework, which should be based on the specific
domain, intended functionality, and the identified quality attributes. This article delves into the
examination of established architectural paradigms utilized in mobile application development,
alongside an exploration of the quality attributes that should be taken into account during the
architectural selection process. The aim here is to unearth prevalent mobile architecture patterns
and provide insights into methods for measuring and comparing these architectures against one
another.

Keywords: software architecture, mobile development, quality attributes, architectural
patterns.

Introduction
Mobile applications have witnessed an unprecedented surge in popularity and

ubiquity over the past decade. This phenomenon can be attributed to several factors,
including increasing smartphone adoption, changing consumer behavior, and the
normalization of mobile-first approaches in businesses. As pointed out in [1], the
penetration rate of smartphones reached 78.05 percent globally in 2020, and this
figure is projected to rise to almost 87 percent in the United States by 2025. With this
surge, mobile applications have become the primary gateway to the online world for
a significant portion of the global population.

In 2010, only 27 percent of mobile users in the United States owned
smartphones, a stark contrast to the anticipated 87 percent in 2025 [1]. This
transformative shift has allowed not only enterprises but also individual developers
and teams to create and distribute their applications to a worldwide audience.
However, this diverse landscape comes with various challenges, ranging from
differences in team sizes, budget constraints, and time-to-market pressures to distinct
marketing strategies and business models.

Not only enterprises but individual developers and teams are allowed to create
their applications and distribute them to a worldwide audience. The organizations
vary in team sizes, budget constraints, time-to-market and marketing strategies, and
business models.

Mobile applications have become integral to our daily lives, facilitating a wide
range of activities, from online shopping to managing finances and accessing
government services. Consequently, mobile application developers bear a
considerable responsibility in ensuring that their products meet high standards of
usability, availability, and reliability. This responsibility extends to both individual

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 34

developers and large enterprises.
Amidst this dynamic landscape, the software architecture of a mobile

application emerges as a pivotal factor. Software architecture encompasses the
fundamental design decisions that dictate how an application will function and
evolve. In the context of mobile applications, where agility, scalability, and user
experience are paramount, the choice of software architecture becomes even more
crucial.

High competition levels and therefore high levels of expectations from users
make mobile application vendors careful in technical decisions and practices. The
first thing every vendor should be aware of is the software architecture of its
product.) – In the realm of mobile applications, a prescient perspective has been
validated, primarily attributed to the rapid pace of evolution within this domain. Each
vendor must possess a profound understanding of the software architecture
underpinning their product as a foundational consideration.

Software Architecture and Quality Attributes for Mobile Applications
Development

How can you ensure that the software architecture you've selected is the most
suitable for your needs? It is not an easy question, and there is no one right answer or
a silver bullet. As stated in the work [2], software architecture is like a bet, a wager,
wouldn't it be nice to know the outcome in advance? To know it, we need to step out
and as we already did for the piece of code and then for software — we need to
establish the rules, and measurements for a clear understanding of which architecture
could fit better in certain conditions. However, the topic has already been well
researched, we found plenty of space to fill towards the architecture of mobile
applications.

Project Managers seek to achieve business requirements, Software Architects
seek to manage the architecture according to these requirements. It can’t be managed
what is not measured. But what can we measure in software architecture? While it
was identified [4] the main quality attributes of the software overall, we would like to
stop on those that are crucial specifically for mobile application development.

Performance. Performance pertains to the system's reactivity, which
encompasses the time needed to react to stimuli (events) or the number of events
processed during a specific period [4]. Performance holds significant importance in
mobile software architecture due to the perpetual resource constraints of mobile
devices, including limitations in terms of microprocessor power, storage capacity,
and battery life .

Reliability. Reliability denotes the system's capacity to sustain continuous
operation throughout its operational lifespan, often assessed through the metric
known as mean time to failure [4]. For mobile systems we should consider that the
network could be unstable, and some operations could fail due to the aforementioned
constraints.

Availability. Availability refers to the percentage of time the system remains
operational [4]. Availability is a critical consideration in mobile application
architecture. Ensuring the availability of a mobile application means that it should be
accessible and operational for users whenever they need it. Mobile applications can

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 35

face challenges related to network connectivity, server availability, and other factors
that can affect their accessibility. To provide a positive user experience, mobile app
architects need to design for availability, which may include strategies like offline
capabilities, redundant servers, and efficient error handling to ensure the app remains
usable even under less-than-ideal network conditions.

Security. Security involves assessing the system's capacity to withstand
unauthorized access attempts and service disruptions, all while maintaining its
functionality for authorized users [4]. Security of Mobile apps involves implementing
robust measures to protect user data and the application itself, ensuring that it remains
resilient in the face of potential security risks.

Modifiability. Modifiability refers to the system's capacity for swift and cost-
effective modifications, which is one of the key attributes for a large team, which is
working on a mobile application.

Portability. Portability refers to a system's adaptability to function across diverse
computing environments, which can encompass hardware, software, or a blend of
both [4]. For a mobile architecture, it could address new versions of OSs or the
device’s screen size.

As stated in the work [2], quality attributes form the basis for architectural
evaluation, but simply naming the attributes by themselves is not a sufficient basis on
which to judge an architecture for suitability. In a perfect world, the quality
requirements for a system would be completely and unambiguously specified in a
requirements document.

Modern Mobile Applications Architectural Styles
Over the years of mobile app development, the projects have rapidly become

more and more complex and harder to maintain. Companies behind major platforms -
Google and Apple have sought to develop guidelines for native app architectures. At
the same time, developers have adapted existing architectural patterns for mobile
platforms and continued to evolve them to adjust to growing complexity. In this
section we will briefly review some of the most popular patterns: MVC, MVP,
MVVM, and Clean architecture-based patterns.

Model-View-Controller (MVC)
Model-View-Controller (MVC) architectural pattern was first introduced by

Trygve Reenskaug while working on Smalltalk based system [3]. MVC architecture
operates with three entities: model, view and controller. A model object encapsulates
the data and implements the logic for manipulating the data. It can be as simple as
storing a string, or more complex, like storing an object with multiple value fields or
retrieving data remotely. A view object is responsible for the user interface. View
object receives updates of model's state and updates the user interface accordingly.
Controller object receives user input events from the view and changes the state of
the model [5].

Over the years, the MVC architecture gained a lot of popularity among
developers thanks to its clear separation of concerns [6].

MVC implementation in iOS
When Apple first published its iPhone SDK, MVC was the recommended

architecture for native apps. However, the implementation Apple has proposed was

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 36

different from the original pattern [7].
View doesn't receive updates of the model directly. Instead, the controller

receives updates of the model and then updates the view accordingly. Ideally, View
and Model should not even be aware of each other and should not be coupled in any
way.

This form has a few advantages, mainly increased maintainability. Decoupled
models and views should make it easier to introduce changes to one of these
components without changing the other. Additionally different teams may be able to
work on business logic and user interface concurrently which can increase overall
productivity and time to market.

MVC and its variants [8] have also become very popular with Android
developers [9] due to its excellent separation of concerns and increased
maintainability.

Model-View-Presenter (MVP)
Model-View-Presenter (MVP) pattern was introduced in 1990s and was one of

the first alternatives to MVC [10]. MVP has a lot in common with MVC. Similarly,
MVP also has 3 entities: Model, View and Presenter.

In MVP, the Model is again responsible for data access and manipulation. The
view is dedicated to user interface and presentation logic. Finally, MVP introduces a
new concept: Presenter. The presenter acts as an intermediary between the Model and
the View. It responds to the user input from the view and updates the Model. At the
same time, the Presenter listens to changes in the Model's state and updates the view
if necessary [11].

The View in MVP is completely separated from the Model, which is similar to
the Apple’s version of MVC we mentioned earlier. While MVP is a little more
complex than MVC, it offers a better separation of concerns, which makes business
logic more testable [11].

Model-View-ViewModel (MVVM)
Model-View-ViewModel (MVVM) architecture was introduced by Microsoft in

the early 2000s and was used in Silverlight and WPF [12]. It became prevalent in
native app development for both Android and iOS.

MVVM operates with three objects: Model, View and ViewModel.Similarly to
MVC and MVP, the Model is responsible for data access, data persistence, and
communication. The View is dedicated to the user interface and should not contain
any logic. The new object ViewModel is the core of the MVVM pattern, and its place
is between Model and View. The view is bound to ViewModel via data binding. The
data binding updates the View automatically when ViewModel’s state changes. A
View can have multiple references to ViewModel. However the ViewModel should
not have any dependencies on View. This is a big difference compared to MVC or
MVP, where presenter or controller will set view in code [9]. This way MVVM
offers even greater separation of concerns and greater testability of ViewModel [11].

Clean Architecture based architectural patterns
Clean Architecture is a layered architectural pattern proposed by Robert C.

Martin [13]. This architecture provides an improved separation of concerns by using
four concentric layers: Entities, Use Cases, Interface Adapters, Framework and

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 37

Drivers.
The central idea behind Clean Architecture is that the inner layers (Entities and

Use Cases) are independent of the outer layers. Business logic and core use cases are
not tightly coupled to specific UI frameworks, databases, or external services. The
dependency flow moves inward, from the outer layers to the inner layers. The inner
layers should have no direct dependencies on the outer layers [13]. This separation
enables easier testing, maintainability, and adaptability [14].

Naturally, Clean Architecture derived patterns became extremely popular with
mobile developers. On iOS the most popular patterns are VIPER [15] and VIP [16].
Android and cross-platform frameworks like Flutter have their own examples of
Clean Architecture implementation [17].

Conclusions and future work
In this work, we discussed what is Software Architecture and Quality Attributes

for Mobile applications and what are the main styles used in Mobile application
development. We discussed the history of architectural styles and patterns and their
implications in the modern world.

In the [18] it was described the variability inherent in the design of the software
architecture and how that variability argues for the use of measures that are tailored
to the context of the specific organization. For instance, different roles seek to have
different points of view and therefore different metrics, specifically, there was
elaborated on Software Architect and Project Manager roles.

That’s also true for different domains – there is no architecture of size-fits-all,
no silver bullet, we should carefully integrate our requirements into Quality
Attributes and therefore pick the right architecture for the solution.

A more in-depth examination underscores the significance of a comprehensive
assessment of mobile software architectures with a focus on their thorough
implementation to ensure the robustness of these attributes and more.

Such examination should first of all rely on practical comparison of the different
architecture codebases. Furthermore, we have posed an essential research question: Is
there a suitable method for selecting the right architecture based on the specific
requirements of a given project? As the field of Mobile Application Development
continues to expand, there is a growing need for a more in-depth exploration of this
topic, particularly concerning the criteria used to evaluate the quality attributes of
Mobile Software Architectures.

Literature:
1. Laricchia, F. (2023, September 28). Global smartphone penetration 2016-

2022. Statista. https://www.statista.com/statistics/203734/global-smartphone-
penetration-per-capita-since-2005/

2. Clements, P., Kazman, R., & Mark. Klein. Evaluating Software
Architectures: Methods and Case Studies, Addison Wesley., Dec 6, 2001.

3. Trygve Reenskaug. The Model-View-Controller (MVC). Its Past and Present
Java Zone, Oslo 18–19 September 2003

4. Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in
practice. Addison-Wesley Professional.

 Modern engineering and innovative technologies Issue 29 / Part 1

ISSN 2567-5273 www.moderntechno.de 38

5. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R.,, Stafford, R. (2002).
Patterns of Enterprise Application Architecture. Addison-Wesley Professional.

6. Campos, E., Kulesza, U., Coelho, R., Bonifácio, R., & Mariano, L. (2015,
April). Unveiling the architecture and design of android applications. In Proceedings
of the 17th international conference on enterprise information systems (Vol. 2, pp.
201-211).

7. Apple Inc. Concepts in Objective-C Programming, Model-View-Controller
[Online]. 2012. Available:
https://developer.apple.com/library/content/documentation/General/Conceptual/Coco
aEncyclopedia/Model-View-Controller/Model-View-Controller.html

8. Sokolova, Karina & Lemercier, Marc. (2014). Towards High Quality Mobile
Applications: Android Passive MVC Architecture. International Journal On Advances
in Software 1942-2628. 7. 123 - 138.

9. Lou, T. (2016). A comparison of Android Native App Architecture MVC ,
MVP and MVVM.

10. Potel, Mike. (1996). MVP: Model-View-Presenter The Taligent
Programming Model for C++ and Java", Taligent Inc.

11. García, R. F. (2023). IOS architecture patterns MVC, MVP, MVVM, Viper,
and VIP in swift. Apress. ISBN: 978-1-4842-9069-9

12. J. Grossman, Introduction to Model/View/ViewModel pattern for building
WPF apps, Microsoft, 8 October 2005. [Online]. Available:
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-
modelviewviewmodel-pattern-for-building-wpf-apps/

13. Martin, R. C. (2017). Clean Architecture: A Craftsman's Guide to Software
Structure and Design. Boston, MA: Prentice Hall. ISBN: 978-0-13-449416-6

14. D. Bui (2017). Reactive Programming and Clean Architecture in Android
Development

15. J. Gilbert and C. Stoll. Architecting ios apps with viper, objc, vol. 13, 2014.
[Online]. Available: https://www.objc.io/issues/13-architecture/viper/

16. R. Law, The Clean Swift Handbook, 2019. [Online]. Available:
https://clean-swift.com/handbook/

17. S. Boukhary and E. Colmenares, A Clean Approach to Flutter Development
through the Flutter Clean Architecture Package, 2019 International Conference on
Computational Science and Computational Intelligence (CSCI), Las Vegas, NV,
USA, 2019, pp. 1115-1120, doi: 10.1109/CSCI49370.2019.00211.

18. Chastek, Gary J.; Ferguson, Robert W. (2018). Toward Measures for
Software Architectures. Carnegie Mellon University. Report.
https://doi.org/10.1184/R1/6585371.v1

Article sent: 20.10.2023

© 2023 Authors

https://developer.apple.com/library/content/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/content/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://www.objc.io/issues/13-architecture/viper/
https://clean-swift.com/handbook/
https://doi.org/10.1184/R1/6585371.v1

