Modern engineering and innovative technologies Issue 40

http://www.moderntechno.de/index.php/meit/article/view/meit40-01-048
DOI: 10.30890/2567-5273.2025-40-01-048

UDC 534.1+517.9
MODELING AND ANALYSIS OF MEMBRANE VIBRATIONS SUBJECTED
TO EXTERNAL FORCES

Malanchuk O. M.

d.t.s., assoc. prof-

ORCID: 0000-0001-7518-7824

Galyk G. V.

senior lecture

ORCID: 0000-0002-2221-0397

Danylo Halytsky Lviv National Medical University,
Lviv, Pekarska 69, 79010

Abstract. Vibrational processes in thin-walled structural components play a crucial role in
modern mechanical engineering and machine science. Membrane- and plate-like elements are widely
used in engineering applications such as acoustic diaphragms, thin mechanical sensors and
actuators, lightweight aerospace skins, and elements of machine constructions exposed to dynamic
loading. Accurate mathematical models of their oscillatory behavior are essential for predicting
dynamic responses, minimizing undesirable vibrations, and ensuring structural reliability.

This paper investigates the vibrations of membranes subjected to external dynamic forces using
the framework of the classical wave equation. The problem is formulated as a second-order partial
differential equation with two-point conditions in time. To analyze the dynamic behavior, the
differential-symbol method is applied to construct analytical and numerical solutions. The external
excitation is introduced as a nonhomogeneous term in the governing equations. The study establishes
a class of functions where a unique solution exists and provides explicit formulas for solution
construction. An illustrative example is presented for oscillatory processes of an infinite membrane.

The proposed approach contributes to machine science by providing an effective mathematical
tool for analyzing vibration modes and dynamic responses of thin-walled components. The results
may be applied to improve the design of acoustic devices, structural sensors, and engineering
elements subjected to dynamic excitation in mechanical and aerospace systems.

Key words: membrane oscillation model, wave equation, two-point in time problem,
differential-symbol method, wave process, mathematical modelling.

Introduction.

Vibrational phenomena in structural components represent one of the
fundamental challenges in contemporary mechanical engineering and machine science.
Thin-walled elements such as membranes and plates are widely used in engineering
structures, where their oscillatory behavior significantly affects the efficiency,
durability, and reliability of machines. Understanding the dynamics of such
components is particularly important in the design of mechanical systems that are
exposed to dynamic loads, acoustic excitations, and varying environmental conditions.

Membrane-like structures appear across a wide spectrum of applications: acoustic

diaphragms in loudspeakers and measuring devices, lightweight aerospace panels and
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skins, biomedical and microfluidic membranes, as well as mechanical sensors and
actuators. In each of these cases, unwanted or uncontrolled vibrations can lead to
reduced performance, increased noise levels, accelerated material fatigue, or even
structural failure. Therefore, accurate mathematical models capable of predicting the
vibrational response of membranes under external dynamic forcing are of both
theoretical and practical interest to mechanical engineering.

The wave equation provides a classical mathematical framework for describing
the transverse oscillations of membranes and thin plates. In machine science, this
equation is used to analyze stress distributions, displacement fields, vibration modes,
and resonance phenomena in mechanical components. However, when external forces
act on the system, the governing equations become nonhomogeneous, and their
solution requires advanced analytical and numerical techniques. The proper resolution
of such problems enables engineers to predict not only the dynamic response of
membranes but also to perform diagnostic or inverse analyses, such as identifying
material parameters or external loads from observed oscillations.

This paper focuses on the mathematical modeling of membrane vibrations under
external dynamic loading. The problem is formulated as a second-order partial
differential equation with two-point conditions in time, and the solution is obtained by
applying the differential-symbol method. This approach provides a constructive
framework for determining unique solutions within a specific class of functions and
offers formulas for explicit solution construction. Analytical results are complemented
by numerical simulations, illustrating the method’s applicability to engineering
problems.

The results of this research contribute to the broader field of machine science by
providing tools for the analysis of vibrational processes in membrane-like structures.
The proposed methodology may serve as a basis for improving the design of acoustic
devices, thin-walled mechanical sensors, and structural components in aerospace and
automotive engineering. Furthermore, the framework can be extended to investigate
more complex oscillatory systems, thereby strengthening the theoretical foundations

of mechanical engineering and expanding its application potential.
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Every physical or other natural process is described by many parameters. To
construct a mathematical model of a process, the most essential of these are selected.
Among the first such models, which are reduced to partial differential equations, were
the equations of string and membrane vibrations. Modeling processes accompanied by
the propagation of vibrations in an elastic medium is based on the application of wave
equations. Such equations are used to describe dynamic processes in continuum
mechanics, acoustics, hydrodynamics, electrodynamics, and other fields of physics and
engineering [1-3].

Classical one-dimensional wave equation

o°U ,oU
ot

is a mathematical model of longitudinal or transverse vibrations in an elastic medium.

Its solution, taking into account the initial and boundary conditions, makes it possible
to describe the patterns of disturbance propagation, reflection, and wave interference
[4].

Many works [5, 6] consider the extension of the classical model to the case of
inhomogeneous media, the presence of dissipation, and external force perturbations. In
particular, works [7] investigate the influence of an external source on wave processes
modeled using a heterogeneous wave equation with a right-hand side describing the
action of the disturbance.

Particular attention should be paid to the approach that consists in reducing the
model to a two-point boundary value problem, which allows investigating the spatial
structure of wave processes at fixed time parameters [8]. This opens up opportunities
for the application of classical analytical methods (e.g., Fourier method, variational
approach, functional-analytical methods) to construct exact or approximate solutions.

Problem statement

The propagation of waves in a homogeneous medium under the influence of an
external force is generally described by a partial differential equation of the form

o’U
ot’

—yzAU:f(t,x,y), (1)
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where A, :?+? is Laplace operator. The unknown function U =U (t,x, y)
X y

describes a wave process, ¢ is time, y is phase velocity of wave propagation, f (t,x, y)

is an external force acting on an oscillatory system. If the wave equation describes the

behavior of sound in a homogeneous medium, then the function U =U (t,x, y)

specifies, in particular, the acoustic pressure.

This study examines the set of solutions to the problem associated with equation
(1). It is worth noting that equation (1) models a wide range of physical phenomena,
including the propagation of forced oscillations in strings and membranes,
electromagnetic wave transmission, ocean wave dynamics and seismic wave
propagation.

Gravitational waves, light waves, sound waves, as well as oscillations of strings,
membranes, and other media, can all be effectively described using the wave equation.
Typical examples include the equation of motion for a stretched string:

82y(t,x) Je, 82y(t,x)
o T o

The propagation speed in such models varies depending on the medium and the

nature of the wave. It may represent the speed of light, the speed of sound, or the
velocity at which a mechanical displacement (e.g., in a string) travels. Specifically, the
speed of mechanical wave propagation in an elastic medium depends on the medium’s
elastic properties and density.

When modeling processes, conditions for the behavior of an unknown function at
certain points in time are often specified. In particular, in the Cauchy problem, the
profile of an infinite string and the rate of change of the profile are specified at a single

point, i.e., equation (1) is considered with the initial conditions
oU
U(0,x) = (x), E(O’x) =y (x). 2)

The problem (1), (2) is correct and the corresponding homogeneous problem has
only a trivial solution. There are mathematical models in which the conditions are set

at different points in time. Such conditions are called two-point or multi-point
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conditions. An example of such conditions is the following
U(O,x)zgo(x), U(h,x)zl//(x). 3)
Unlike the Cauchy problem (1), (2), problem (1), (3) is an incorrect two-point
problem. In particular, the solutions of equation (1) at that satisfy the conditions
U(0,x)=0, U(h,x)=0, (4)
are the functions of the form

. 7wkt . mwhkx
U, (t,x)= sinZ % sin2™ keN.
h vh
In this paper, we use the differential-symbol method to investigate the process of
wave propagation under the action of a force in unbounded domains, described by an

unknown function U(#,x,y), which is the solution of equation (1) and satisfies the

following two-point conditions in time:
U(O,x,y)zO, U(h,x,y)zO. (5)

The homogeneous problem for a partial differential equation of second order in
time and of infinite order in spatial variables, was investigated in [9]. The problem for
second order in time partial differential equation with two-point conditions was
analyzed in [10, 11]. In works [12, 13], the ideas of the differential-symbol method
were implemented for solving problems with different conditions for partial differential
equations. The behavior of an oscillatory process described by a homogeneous wave
equation with homogeneous conditions is studied in [14].

Let’s consider the set M is the set of function zeroes

_sinh| y|v]|#]
A

: (6)

where |v||=\ +v;,

Let the function f (t,x, y) has the following form

f(tx,p)=2 2 1 (tx,y)e™ =,

i=l j=1

where al,azeCz\M, ﬂl...,ﬂmeCZ\M, ﬁl(t,x,y),...,ﬂm(t,x,y) are arbitrary
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nonzero polynomials with complex coefficients of variables ¢ and x.
The problem (1), (5) has an unique solution in the class of quasi-polynomials,

and this solution can be found by the formula [15]
0 0

Utxy) = f(a,gj{F(t,/l,v)evl”w}

e’ =T, (t,v,v,)—e"T,(t,v,,v,)

. (7)

A=0,v=0

where F(t,4,v)=

L(/I,vl,vz) ’
R () 1 sinh[yf]]
A Y IR (% B

Let’s prove that the function of the form (7) is the solution of the equation (1).
G,

o o\ o &
_72(f(a’6vj(6x2+5y2D{F(t’&V)e '}

Taking into account following equality

T, (t,v,,v,)
ot

A=0,v=0

o°T, (t,v,,v,)
ot

—}/2]—{(Z,V1,V2) _7/2Tz(taV1:V2)a

we get
e P 8 o 0 ),
_ _ - U t — - t+vix+v,y
(aﬁ [Gx +8y2n (1-x.9) f(a/l’avl’avzj{e }
:f(t,x,y).

It is easy to verify that function (7) satisfies conditions (5). The uniqueness of the

A=0,v=0

solution to problems (1), (5) can be proved by contradiction.
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Let’s consider two-point problem for following condition
(O,x,y):O, U(l,x,y):O. (8)
We write the functions A(v,,v,), T,(#,v,,v,), T,(¢,v,,v,)and the set M for the

. h 2
problem (1), (8): A(V)I%, M Z{VECZ :||v||2 =—(ﬂ7k) ,keN},

sl A(1-0)] ) srile]

T(tv)= ,
o AN
The function F(¢,A,v,,v,) for problem (1), (8) has the form:

e’ =T, (t,v,v,)—e"T,(t,v,,v,)
L(/'L,vl,vz) '

F(t,A,v,v,)=

Let’s find unknown function U (#,x, y), if a constant external force f'(z,x,y)=1
acts on the oscillatory system. Since A(0,0)=1% 0, then the solution of problem (1),

(8) can be found by formula (7):

U(t,x,y)= {F(t,l,vl,vz )eV1x+V2y} |z:0,v:o:

pr 1 : 4
:e —Sinh[}/”m(smh[y”v”(l—t)]+e s1nh[;/||v||t])

2=

VIX+V, Y

e =

A=0,v=0

BN () L2 O A

(1=72 I Jsinh v

v=0
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Fig.1a) The graph of the function U(¢) Fig.16) The function U (0.5,x,y)

ISSN 2567-5273 79 www.moderntechino.de



S

Modern engineering and innovative technologies Issue 40 / Part 1 é

Therefore, if a constant external force acts on the oscillatory system described by

problem (1), (8), then the unknown function depends only on time (Fig. 1a, b)).

Let’s find unknown function U (¢,x,y), if an external force f(¢,x,y)=te*"” acts
on the oscillatory system. Since A(0,0)=1%0, then the solution of the problem (1),
(8) we find by formula (7):

U(t,x,y)= %{F(t’/lav)evlmzy} |A=0,v=0:

5 e’ _sinh[17/||v||](smh[7/”v”(1_t)] +e sinh[j/”v”t])

ViX+v,y

o 2 =7
A=0,v;=1,v,=1
(tsinh[ 7] =sinb[#]c]) ..... L[, sinh[V2pe])
- T e ==l =7°
7| sinb[ 7] Y sinh|[ V27|

X1+X2

In the case an external force f(¢,x,,x,)=1e"" acts on the oscillatory system, the

solution for problem (1), (8) describes the oscillatory process at any given moment in
time. In particular, at moments ¢=0,5 and # =2 we obtain, respectively:
111 Sinh|:\/§7 / 2:|
2y%| 2 sinh[ﬁy]
1 sinh 2\/57/
U (2, X, y) =— 2— [ }

2y° sinh[ﬁy]

Future research may focus on extending the developed mathematical model by

xX+y

U(O,S, xl,xz):— ¢,

xX+y

€

incorporating additional physical factors, such as material inhomogeneity, anisotropy,
damping effects, nonlinearity, and more complex forms of external excitation —
including impulsive, stochastic, or spatially nonuniform forces.

Special attention may be devoted to the application of the proposed approach to
inverse problems, such as identifying unknown external forces or system parameters
from known system states at two different time moments. This opens opportunities for

use in control, diagnostics, and signal reconstruction in distributed parameter systems.
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Conclusions

The process of wave propagation under the action of an external dynamic force in
an unbounded spatial domain, where the values of the unknown function are specified
at two distinct moments in time, is mathematically modeled by a two-point in time
problem for a non-homogeneous wave equation. This type of formulation arises
naturally in physical systems where the state of the medium is known at both the initial
and final time points, and the goal is to determine the behavior of the system in the
intermediate time interval under the influence of external forcing.

To solve this problem, the differential-symbol method is employed. Within this
framework, the necessary and sufficient conditions for the existence and uniqueness of
the solution are rigorously derived, ensuring the mathematical well-posedness of the
problem. Furthermore, an explicit constructive formula for the solution is obtained,
which incorporates the effects of the external force and the specified boundary data in
time.

This approach not only provides a theoretical foundation for analyzing such wave
processes but also opens the way for efficient numerical implementation and deeper
insight into the dynamics of forced oscillations in unbounded media. The results are
applicable to a wide range of problems in acoustics, continuum mechanics, and other

fields involving wave propagation in infinite or semi-infinite domains.
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