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Abstract.  Vibrational processes in thin-walled structural components play a crucial role in 
modern mechanical engineering and machine science. Membrane- and plate-like elements are widely 
used in engineering applications such as acoustic diaphragms, thin mechanical sensors and 
actuators, lightweight aerospace skins, and elements of machine constructions exposed to dynamic 
loading. Accurate mathematical models of their oscillatory behavior are essential for predicting 
dynamic responses, minimizing undesirable vibrations, and ensuring structural reliability. 

This paper investigates the vibrations of membranes subjected to external dynamic forces using 
the framework of the classical wave equation. The problem is formulated as a second-order partial 
differential equation with two-point conditions in time. To analyze the dynamic behavior, the 
differential-symbol method is applied to construct analytical and numerical solutions. The external 
excitation is introduced as a nonhomogeneous term in the governing equations. The study establishes 
a class of functions where a unique solution exists and provides explicit formulas for solution 
construction. An illustrative example is presented for oscillatory processes of an infinite membrane. 

The proposed approach contributes to machine science by providing an effective mathematical 
tool for analyzing vibration modes and dynamic responses of thin-walled components. The results 
may be applied to improve the design of acoustic devices, structural sensors, and engineering 
elements subjected to dynamic excitation in mechanical and aerospace systems. 

Key words: membrane oscillation model, wave equation, two-point in time problem, 
differential-symbol method, wave process, mathematical modelling. 

Introduction.  

Vibrational phenomena in structural components represent one of the 

fundamental challenges in contemporary mechanical engineering and machine science. 

Thin-walled elements such as membranes and plates are widely used in engineering 

structures, where their oscillatory behavior significantly affects the efficiency, 

durability, and reliability of machines. Understanding the dynamics of such 

components is particularly important in the design of mechanical systems that are 

exposed to dynamic loads, acoustic excitations, and varying environmental conditions. 

Membrane-like structures appear across a wide spectrum of applications: acoustic 

diaphragms in loudspeakers and measuring devices, lightweight aerospace panels and 
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skins, biomedical and microfluidic membranes, as well as mechanical sensors and 

actuators. In each of these cases, unwanted or uncontrolled vibrations can lead to 

reduced performance, increased noise levels, accelerated material fatigue, or even 

structural failure. Therefore, accurate mathematical models capable of predicting the 

vibrational response of membranes under external dynamic forcing are of both 

theoretical and practical interest to mechanical engineering. 

The wave equation provides a classical mathematical framework for describing 

the transverse oscillations of membranes and thin plates. In machine science, this 

equation is used to analyze stress distributions, displacement fields, vibration modes, 

and resonance phenomena in mechanical components. However, when external forces 

act on the system, the governing equations become nonhomogeneous, and their 

solution requires advanced analytical and numerical techniques. The proper resolution 

of such problems enables engineers to predict not only the dynamic response of 

membranes but also to perform diagnostic or inverse analyses, such as identifying 

material parameters or external loads from observed oscillations. 

This paper focuses on the mathematical modeling of membrane vibrations under 

external dynamic loading. The problem is formulated as a second-order partial 

differential equation with two-point conditions in time, and the solution is obtained by 

applying the differential-symbol method. This approach provides a constructive 

framework for determining unique solutions within a specific class of functions and 

offers formulas for explicit solution construction. Analytical results are complemented 

by numerical simulations, illustrating the method’s applicability to engineering 

problems. 

The results of this research contribute to the broader field of machine science by 

providing tools for the analysis of vibrational processes in membrane-like structures. 

The proposed methodology may serve as a basis for improving the design of acoustic 

devices, thin-walled mechanical sensors, and structural components in aerospace and 

automotive engineering. Furthermore, the framework can be extended to investigate 

more complex oscillatory systems, thereby strengthening the theoretical foundations 

of mechanical engineering and expanding its application potential. 



 

 Modern engineering and innovative technologies                                                                    Issue 40 / Part 1 

ISSN 2567-5273                                                                                                                                                                                   www.moderntechno.de 75 

Every physical or other natural process is described by many parameters. To 

construct a mathematical model of a process, the most essential of these are selected. 

Among the first such models, which are reduced to partial differential equations, were 

the equations of string and membrane vibrations.  Modeling processes accompanied by 

the propagation of vibrations in an elastic medium is based on the application of wave 

equations. Such equations are used to describe dynamic processes in continuum 

mechanics, acoustics, hydrodynamics, electrodynamics, and other fields of physics and 

engineering [1–3]. 

Classical one-dimensional wave equation 
2 2

2
2 2

U Uc
t x

∂ ∂
=

∂ ∂
 

is a mathematical model of longitudinal or transverse vibrations in an elastic medium. 

Its solution, taking into account the initial and boundary conditions, makes it possible 

to describe the patterns of disturbance propagation, reflection, and wave interference 

[4]. 

Many works [5, 6] consider the extension of the classical model to the case of 

inhomogeneous media, the presence of dissipation, and external force perturbations. In 

particular, works [7] investigate the influence of an external source on wave processes 

modeled using a heterogeneous wave equation with a right-hand side describing the 

action of the disturbance.  

Particular attention should be paid to the approach that consists in reducing the 

model to a two-point boundary value problem, which allows investigating the spatial 

structure of wave processes at fixed time parameters [8]. This opens up opportunities 

for the application of classical analytical methods (e.g., Fourier method, variational 

approach, functional-analytical methods) to construct exact or approximate solutions. 

Problem statement 

The propagation of waves in a homogeneous medium under the influence of an 

external force is generally described  by a  partial differential equation of the form 

( )
2

2
2 , , ,U U f t x y

t
γ∂

− ∆ =
∂

         (1) 
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where 
2 2

2 2 2x y
∂ ∂

∆ = +
∂ ∂

 is Laplace operator. The unknown function ( ), ,U U t x y=  

describes a wave process, t  is time, γ  is phase velocity of wave propagation, ( ), ,f t x y  

is an external force acting on an oscillatory system. If the wave equation describes the 

behavior of sound in a homogeneous medium, then the function ( ), ,U U t x y=  

specifies, in particular, the acoustic pressure. 

This study examines the set of solutions to the problem associated with equation 

(1). It is worth noting that equation (1) models a wide range of physical phenomena, 

including the propagation of forced oscillations in strings and membranes, 

electromagnetic wave transmission, ocean wave dynamics and seismic wave 

propagation.  

Gravitational waves, light waves, sound waves, as well as oscillations of strings, 

membranes, and other media, can all be effectively described using the wave equation. 

Typical examples include the equation of motion for a stretched string: 

( ) ( )2 2

2 2

, ,y t x y t x
x T t

ρ∂ ∂
=

∂ ∂
. 

The propagation speed in such models varies depending on the medium and the 

nature of the wave. It may represent the speed of light, the speed of sound, or the 

velocity at which a mechanical displacement (e.g., in a string) travels. Specifically, the 

speed of mechanical wave propagation in an elastic medium depends on the medium’s 

elastic properties and density.  

When modeling processes, conditions for the behavior of an unknown function at 

certain points in time are often specified. In particular, in the Cauchy problem, the 

profile of an infinite string and the rate of change of the profile are specified at a single 

point, i.e., equation (1) is considered with the initial conditions 

(0, ) ( ), (0, ) ( )UU x x x x
t

ϕ ψ∂
= =

∂
.     (2) 

The problem (1), (2) is correct and the corresponding homogeneous problem has 

only a trivial solution. There are mathematical models in which the conditions are set 

at different points in time. Such conditions are called two-point or multi-point 
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conditions. An example of such conditions is the following 

 ( ) ( ) ( ) ( )0, , , .U x x U h x xϕ ψ= =                                                (3) 

Unlike the Cauchy problem (1), (2), problem (1), (3) is an incorrect two-point 

problem. In particular, the solutions of equation (1) at  that satisfy the conditions 

( ) ( )0, 0, , 0,U x U h x= =                                                             (4) 

are the functions of the form 

 ( ), sin sin ,k
kt kxU t x k
h h
π π

γ
= ∈ . 

In this paper, we use the differential-symbol method to investigate the process of 

wave propagation under the action of a force   in unbounded domains, described by an 

unknown function ( ), ,U t x y , which is the solution of equation (1) and satisfies the 

following two-point conditions in time: 

( ) ( )0, , 0, , , 0.U x y U h x y= =      (5) 

The homogeneous problem for a partial differential equation of second order in 

time and of infinite order in spatial variables, was investigated in [9]. The problem for 

second order in time partial differential equation with two-point conditions was 

analyzed in [10, 11]. In works [12, 13], the ideas of the differential-symbol method 

were implemented for solving problems with different conditions for partial differential 

equations. The behavior of an oscillatory process described by a homogeneous wave 

equation with homogeneous conditions is studied in [14]. 

Let’s consider the set M  is the set of function zeroes  

 ( )
sinh

,
hγ ν

ν
γ ν
  ∆ =     (6) 

where 2 2
1 2ν ν ν= + ,   

Let the function ( ), ,f t x y  has the following form 

( ) ( ) 1 2

1 1
, , , , ,i

m n
x y t

ij
i j

f t x y f t x y eα α β+ +

= =

=∑∑  

where 2
1 2, \ ,C Mα α ∈  2

1..., \ ,m C Mβ β ∈  ( ) ( )11 , , ,..., , ,nmf t x y f t x y  are arbitrary 
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nonzero polynomials with complex coefficients of variables  t  and  x . 

 The problem (1), (5) has an unique solution in the class of quasi-polynomials, 

and this solution can be found by the formula [15] 

 ( ) ( ){ }1 2

0,
, , , , , ,x y

O
U t x y f F t eν ν

λ ν
λ ν

λ ν
+

= =

∂ ∂ =  ∂ ∂ 
 (7) 

where ( ) ( ) ( )
( )

1 1 2 2 1 2

1 2

, , , ,
, , ,

, ,

t he T t e T t
F t

L

λ λν ν ν ν
λ ν

λ ν ν
− −

=   

( ) ( )
( )

1 1 2

sinh1, , ,
h t

T t
γ ν

ν ν
ν γ ν

 −  =
∆

   ( ) ( )2 1 2

sinh1, ,
t

T t
γ ν

ν ν
ν γ ν

  =
∆

. 

Let’s prove that the function of the form (7) is the solution  of the equation (1).  

 

 

( ){ }1 2

2 2 2
2

2 2 2 0,
, , , x y

O
f F t e
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γ λ ν

λ ν
+

= =
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Taking into account following equality  

( ) ( )
2

21 1 2
1 1 22

, ,
, , ,

T t
T t

t
ν ν

γ ν ν
∂

=
∂

( ) ( )
2

22 1 2
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, , ,

T t
T t

t
ν ν

γ ν ν
∂
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we get   

( ) { }

( )

1 2

2 2 2
2

2 2 2 0,
1 2

, , , ,

, , .

t x y

O
U t x y f e

t x y

f t x y

λ ν ν

λ ν
γ

λ ν ν
+ +

= =

    ∂ ∂ ∂ ∂ ∂ ∂
− + =    ∂ ∂ ∂ ∂ ∂ ∂    

=

 

It is easy to verify that function (7) satisfies conditions (5).  The uniqueness of the 

solution to problems (1), (5) can be proved by contradiction. 

( )
2 2 2

2
2 2 2 , ,U t x y

t x y
γ

  ∂ ∂ ∂
− + =  ∂ ∂ ∂  
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Let’s consider two-point problem for following condition 

 ( ) ( )0, , 0, 1, , 0.x y U x y= =        (8) 

We write the  functions ( )1 2,ν ν∆ , ( )1 1 2, , ,T t ν ν  ( )2 1 2, ,T t ν ν and the set  for the 

problem (1), (8): ( )
sinh

,
γ ν

ν
γ ν
  ∆ =

2
22 : , ,kM C k Nπν ν

γ

   = ∈ = − ∈  
   

 

( ) ( ) ( )1 2

sinh 1 sinh
, , , .

t t
T t T t

γ ν γ ν
ν ν

γ ν γ ν
 −      = =   

The function ( )1 2, , ,F t λ ν ν for problem (1), (8) has the form: 

( ) ( ) ( )
( )

1 2 1 2
1 2

1 2

1 2

, , , ,
, , , .

, ,

t he T t e T t
F t

L

λ λν ν ν ν
λ ν ν

λ ν ν
− −

=  

Let’s find unknown function ( ), ,U t x y , if a constant external force ( ), , 1f t x y =  

acts on the oscillatory system. Since ( )0,0 1 0∆ = ≠ , then the solution of problem (1), 

(8) can be found by formula (7): 

( ) ( ) 1 2
1 2 0,, , , , ,{ }|x y

OU t x y F t eν ν
λ νλ ν ν +
= == =

( )( )
1 2

0,

22 2

sinh 1 sinh
s n

1
i h

t
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O

t te e
e

λ λ
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λ ν

γ ν γ ν
γ ν

λ γ ν
+

= =

−

=

 −  +       =
−

 

( )( )
( ) ( )1 2

22

sinh 1 sinh
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1 si
1
2nh

1x y

O

e t
t t

tν ν

ν

γ ν γ ν

γ ν γ ν
+

=

 −  +
=

    
− 
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− −
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Fig.1а) The graph of the function ( )U t      Fig.1б) The function  ( )0.5, ,U x y  
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Therefore, if a constant external force acts on the oscillatory system described by  

problem (1), (8), then the unknown function  depends only on time (Fig. 1a, b)). 

Let’s find unknown function ( ), ,U t x y , if an external force ( ), , x yf t x y te +=   acts 

on the oscillatory system.  Since ( )0,0 1 0∆ = ≠ , then the solution of the problem (1), 

(8) we find by formula (7):    

( ) ( ) 1 2
0,, , ,, { }|x y

OU t F t ex y ν ν
λ νλ ν

λ
+

= = =
∂

=
∂

 

( )( )
1 2

1 20, 1

2 2

,

2

1

sinh 1 sinh
sinh

1t

x y

t te e
e

λ λ

ν ν

λ ν ν

γ ν γ ν
γ ν

λ γ νλ
+

= = =

=

 −  +  

=


     
−

− ∂  
∂  

  

( )
1 2

1 2

22 2

1, 1

t sinh sinh
.

sin

sinh 21 e
2 sih nh 2

x y x y
t

e t
t

ν ν

ν ν

γ ν

γ

γ

γ γ

γν

ν γν
+ +

= =

  −   =
  

  − = − −
 




   

 
 

In the case an external force ( ) 1 2
1 2, , x xf t x x te +=  acts on the oscillatory system, the 

solution for problem (1), (8) describes the oscillatory process at any given moment in 

time. In particular, at moments   0,5t =  and 2t =  we obtain, respectively: 

( )1 2 2

sinh 2 / 21 10,5, , e ,
2 2 sinh 2

x yU x x
γ

γ γ
+

  
  = − −

  
  

( ) 2

sinh 2 212, , 2 e
2 sinh 2

.x yU x y
γ

γ γ
+

  
  = − −

  
  

 

Future research may focus on extending the developed mathematical model by 

incorporating additional physical factors, such as material inhomogeneity, anisotropy, 

damping effects, nonlinearity, and more complex forms of external excitation — 

including impulsive, stochastic, or spatially nonuniform forces. 

Special attention may be devoted to the application of the proposed approach to 

inverse problems, such as identifying unknown external forces or system parameters 

from known system states at two different time moments. This opens opportunities for 

use in control, diagnostics, and signal reconstruction in distributed parameter systems. 
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Conclusions 

The process of wave propagation under the action of an external dynamic force in 

an unbounded spatial domain, where the values of the unknown function are specified 

at two distinct moments in time, is mathematically modeled by a two-point in time 

problem for a non-homogeneous wave equation. This type of formulation arises 

naturally in physical systems where the state of the medium is known at both the initial 

and final time points, and the goal is to determine the behavior of the system in the 

intermediate time interval under the influence of external forcing. 

To solve this problem, the differential-symbol method is employed.  Within this 

framework, the necessary and sufficient conditions for the existence and uniqueness of 

the solution are rigorously derived, ensuring the mathematical well-posedness of the 

problem. Furthermore, an explicit constructive formula for the solution is obtained, 

which incorporates the effects of the external force and the specified boundary data in 

time. 

This approach not only provides a theoretical foundation for analyzing such wave 

processes but also opens the way for efficient numerical implementation and deeper 

insight into the dynamics of forced oscillations in unbounded media. The results are 

applicable to a wide range of problems in acoustics, continuum mechanics, and other 

fields involving wave propagation in infinite or semi-infinite domains. 
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