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Abstract. In this model, a single layer of a homogeneous isotropic elastic composite plate is
described by dispersion relations of the following type symmetric and antisymmetric modes of Lamb
waves. The composite plate is modeled as a homogeneous transversely isotropic material with the
x3-axis as the axis of symmetry. An analytical plane strain model can be considered without loss of
generality and this will be sufficient to determine the propagation characteristics of directed waves.
For the case of a transversely isotropic composite material, the model problem can be divided into
the motions of symmetric and antisymmetric modes of Lamb wave packets. The standard laminar
composite flaw detection technique includes a model delamination object in the form of a
discontinuity with reduced bending stiffness in the delamination region. The reduction in bending
stiffness in the delamination region can be explained by the separation of the laminate in this region
into upper and lower sublayers, in which the waveguide is divided into two separate subwaveguides.
The presence of a discontinuity can cause both reflected and transmitted waves from the
delamination. However, in composite laminates, the scattering of Lamb waves at delaminations is a
rather complex phenomenon. In this regard, it is necessary to evaluate the accuracy of the equivalent
isotropic model in predicting the scattering characteristics of the Lamb A0 wave at delaminations in
composite laminates. The method involves the analysis of the characteristics of scattered Lamb waves
AQ0, which were obtained from a limited number of monitoring points by calculating the difference
between the signal from the undamaged plate and the signal from the damaged plate.
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Introduction.

The utilization of composite materials, particularly in the form of multilayer
plates, has become ubiquitous across various advanced engineering sectors, including
aerospace, automotive, and civil infrastructure, driven by their exceptional strength-to-
weight ratio, high stiffness, and customizable mechanical properties. Ensuring the
structural integrity and long-term reliability of these complex structures is paramount,
necessitating robust and highly sensitive non-destructive evaluation techniques.
Among the most effective methods for inspecting large-area, thin-walled composite
structures is the use of guided waves, specifically Lamb waves, which can propagate
over significant distances while remaining sensitive to various forms of damage such

as delamination, cracks, and porosity. Lamb waves are elastic waves that travel within

ISSHN 2567-5273 94 www.moderntechno.de



Modern engineering and innovative technologies Issue 18 / Part 1

a solid plate or shell and are governed by the plate boundaries, exhibiting distinct wave
modes that are dispersive, meaning their speed depends on the frequency-thickness
product. This characteristic dispersion, while complicating analysis, also provides a
rich source of information for damage detection. The analysis of Lamb wave
propagation in single-layer isotropic plates is a well-established field, characterized by
two fundamental families of modes: symmetric modes, often denoted SO, which
involve predominantly in-plane motion and symmetric displacement across the mid-
plane, and antisymmetric modes, denoted A0, which involve predominantly out-of-
plane motion and antisymmetric displacement across the mid-plane [1]. The SO and A0
modes are particularly important in non-destructive testing due to their low-frequency
nature and ability to travel long distances with minimal attenuation. However, when
moving from a single isotropic layer to a multilayer composite plate, the complexity of
wave propagation increases significantly due to several factors. Firstly, the material
properties within each layer are typically anisotropic, often exhibiting orthotropy or
transverse isotropy, a direct result of the fiber reinforcement direction. Secondly, the
interaction between layers through interfaces, which may involve perfect bonding or
slight imperfections, introduces further complexity into the boundary conditions.
Thirdly, the presence of multiple layers with potentially varying thicknesses and
material orientations leads to a much larger number of possible wave modes, as the
total number of modes in a multilayer structure is a superposition of the modes that
could exist in each individual layer, coupled through the interface boundary conditions.
Understanding the characteristics of these symmetric and antisymmetric modes in
multilayer composite plates is thus a foundational requirement for successful guided
wave inspection. The study of wave propagation in these complex media relies on
sophisticated theoretical frameworks, primarily employing effective medium theories
or, more commonly and accurately, the global matrix method, the transfer matrix
method, or the stiffness matrix method, all of which solve the Christoffel equation
subject to the boundary conditions at the free surfaces and the continuity conditions at
the layer interfaces. These methods yield the dispersion relations such as equations

linking wave frequency, phase velocity, and group velocity that are essential for
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predicting wave behavior and for interpreting experimental results. The symmetric and
antisymmetric classification, which is straightforward for a single isotropic layer, must
be carefully considered for multilayer composites [2]. If the plate as a whole is
structurally and materially symmetric with respect to its mid-plane (i.e., a laminate with
a symmetric stacking sequence and symmetric properties), the wave modes can still be
rigorously classified as symmetric or antisymmetric with respect to the mid-plane
displacement and stress profiles. However, in the case of unsymmetric laminates,
where the stacking sequence or material properties are not mirrored across the mid-
plane, the wave motion generally becomes coupled, meaning the concepts of purely
symmetric and purely antisymmetric modes no longer strictly apply. Instead, the modes
exhibit mixed characteristics, though they are often still loosely referred to as quasi-
symmetric or quasi-antisymmetric based on the dominant displacement component.
The practical application of guided waves in composite inspection is critically
dependent on accurately predicting the behavior of these modes. For instance, the A0
mode, characterized by its low phase velocity at low frequencies, is often highly
sensitive to delamination and out-of-plane defects due to its significant out-of-plane
displacement component, while the SO mode is often more sensitive to in-plane defects
like fiber breaks or matrix cracks. The ability to select the optimal excitation frequency
and mode type is crucial for maximizing defect detection probability and minimizing
inspection time. Furthermore, the strong dispersion exhibited by the higher-order
modes in multilayer composites means that a wave pulse, composed of multiple
frequencies, will spread out as it propagates, which can complicate signal analysis and
time-of-flight measurements, necessitating the use of advanced signal processing
techniques such as the wavelet transform or two-dimensional Fourier transform to
isolate individual modes. Research in this field is continually advancing, focusing on
developing more efficient and accurate numerical models, understanding the effects of
material damping and viscoelasticity on propagation, and, most importantly, modeling
the complex interaction and scattering of these wave modes with various types of
damage that are characteristic of multilayer composite structures. The fundamental

theoretical understanding of symmetric and antisymmetric mode propagation in these
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complex, anisotropic media remains the bedrock upon which all practical non-
destructive evaluation strategies for multilayer composite plates are built. The pursuit
of an accurate and efficient theoretical framework for predicting these dispersive
characteristics is essential for the future development of reliable structural health
monitoring systems for these ubiquitous high-performance materials.

Dispersion relations of the following type symmetric and antisymmetric
modes

The zero-crossing algorithm assumes the possibility of decomposing the
measured signals wui(t) at different distances into a set of signals with a limited
bandwidth wu;(t). Such a procedure becomes possible provided that the signals u;(t) are
filtered using bandpass filters with a narrower bandwidth than the bandwidth of the
incident spectrum.

At the next step for each filtered signal ui(¢?) the delay times #mk and 7+ 1)mk are
estimated. In this way, the phase velocities cpmk and frequencies fmi are calculated.
Then, the obtained sets (fmk. cpmk) can be represented as segments of the phase velocity
dispersion curve.

Each section of the dispersion curve obtained using one of the filters can be
reconstructed in a relatively narrow passband. In addition, scanning the filter's central
frequency in wide frequency ranges will allow covering a large part of the falling
spectrum.

The frequency spectrum of two adjacent signals can be represented as

Ui (f)=FTlu, (1)) (D)
U (/)= FTluz (0)]- (2)
where u;i(?) is the signal measured at distance xi(?);
ui+1(?) 1s the signal measured at distance x;+(?);
FT is the Fourier transform.
Adjacent bands of the frequency spectra are filtered by k& Gaussian bandpass

filters with predetermined parameters

Ui (1)=U,(1)- Bi(f)- (3)
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Uik (f): Ui+1(f)' B, (f) 4)

where the frequency response of k-th bandpass filter is

B,(f)=exppin(0.5)-AB2 [ - f, —(k -0 P} k=12...K. (5
where f; is the left frequency filter edge;

fu is the central part of frequency filter edge;
AB is the filter bandwidth;

the frequency domain dfis

fu—11
df =—+——=+ 6
iy = ©
The signal reconstruction using the Fourier transform has the following form
-1
uy (6)= FT U, (f)). (7)
ey ()= Fr™! [U(i+l)k (f)] 3

At the next stage of the numerical method. the phase velocity can be estimated
according to the following relation
Xig1 =X

pmk — l : (9)
Lisymk — Limk

c

Using the data on the duration of the half-periods of the first signal, it is possible
to estimate the equivalent frequencies to which the calculated values of the phase
velocity should be assigned

0.5
fimk = . (10)

Liimak — Limk

Comparison of the results obtained using the proposed hybrid method and the
previous version of the reference zero-crossing method showed that the zero-crossing
method recovers the phase velocity dispersion curve in the frequency range of 286—
319 kHz. This bandwidth is only 8% of the original signal bandwidth.

Meanwhile, the proposed spectrum decomposition approach allows us to recover
the phase velocity dispersion curve in a significantly wider frequency range. This range
covers almost the entire bandwidth of the incident Lamb wavelet signal. # should be

noted that the frequency ranges in which the dispersion curve is reconstructed depend
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significantly on the bandwidth of the filters used in the spectrum decomposition
approach.

For example, for the 120 kHz filter, 70% coverage of the incident signal
bandwidth was achieved. Finally, the best results were achieved with the narrowest
filter (40 kHz bandwidth). For this narrowed filter, the reconstructed dispersion curve
covers 90% of the original bandwidth.

In summary, it can be argued that narrow filters are more efficient, but this leads
to a large number of filters, which generates more computational resources and longer
processing times.

Typical B-scan results for the propagation of the A0 Lamb wave mode in a 2

mm thick laminated composite sample are presented in Table 1.

Table 1 - Dispersion dependences for A0 mode of the Lamb wave

A-band B-band C-band
f, kHz A’ F, kHz A’ F, kHz A’
15.9304 0.0152 157.2193 0.5169 304.7936 0.5203
25.3012 0.0338 158.1551 0.4882 311.3182 0.5458
34.6720 0.1083 162.8342 0.5017 318.7750 0.5085
41.2316 0.2183 170.3209 0.4595 322.5033 0.5864
47.7912 0.2470 176.8717 0.5456 328.0959 0.6661
58.0991 0.2369 185.2941 0.5253 327.1638 0.7322
62.7845 0.3063 187.1658 0.6284 333.6884 0.6898
61.8474 0.4856 195.5882 0.7128 341.1451 0.7254
69.3440 0.6125 199.3316 0.7010 343.9414 0.6644
74.0295 0.4399 199.3316 0.7517 347.6698 0.5458
78.7149 0.3012 203.0749 0.7973 356.9907 0.5746
85.2744 0.4467 209.6257 0.7720 361.6511 0.6085
87.1486 0.5330 213.3690 0.7483 364.4474 0.5339
89.9598 0.6261 213.3690 0.8142 363.5153 0.4864
96.5194 0.5753 217.1123 0.8953 362.5832 0.3814
104.0161 0.7547 218.9840 0.9865 366.3116 0.2712
111.5127 0.5381 233.0214 0.8666 377.4967 0.1780
113.3869 0.6819 237.7005 0.6791 387.7497 0.1051
115.2610 0.7902 246.1230 0.7500 399.8668 0.1322
122.7577 0.9306 248.9305 0.8497 411.9840 0.1797
126.5060 0.8190 254.5455 0.9662 424.1012 0.1102
136.8139 0.7580 263.9037 0.9578 430.6258 0.0678
143.3735 0.7733 266.7112 0.8868 441.8109 0.1186
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The dispersion curve data for the relative amplitude are divided into three ranges: A-
band (0 - 150 kHz). B-band (150-300 kHz) and C-band (300-500 kHz).

In this model, a single layer of a homogeneous isotropic elastic composite plate is
described by dispersion relations of the following type symmetric and antisymmetric

modes of Lamb waves
(Zk2 — k22)2 cosh(r, H )sinh(r, H ) — 4k 1,1, sinh(17, H )cosh(r, H)=0. (11)
Accordingly, for antisymmetric modes of Lamb waves, the equation can be

modified as follows
(Zk2 — k22)2 sinh (77, H )cosh(r, H ) — 4k*n,n, cosh(r7, H )sinh(7, H) =0, (12)

where

;= kz—ka-a kac_a j:1525 (13)

k = o/c is the angular wavenumber;

H is half the thickness of the composite sample;

c1 1s the P-wave velocity for lamina composite material;
¢ 1s the S-wave velocity for lamina composite material.

The working fluid for the model calculation experiment was a laminar composite
consisting of several layers with the stacking sequence [0°/45°/0°/45°]s. The composite
plate is modeled as a homogeneous transversely isotropic material with the xs-axis as
the axis of symmetry.

Young's modulus £, can be determined from the results of a standard uniaxial
tensile test in the x;, direction. In addition, a stress-strain curve is plotted from the tensile
test results. Poisson's ratio vi, in the 1-2 plane is determined from the same test by
measuring the strains in both the x; and x, directions. The shear modulus G»3 and the

elastic constant £33 for the composite face sheet are determined from the equations
2
Gy =033p, (14)

PEzz(l —Vi2 )0121 (15)

b

by = 2 2
Ey (1 - V12)+ 2pvizop

where vy 1s the longitudinal wave velocity;
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L23 1s the shear wave velocity;

An analytical plane strain model can be considered without loss of generality and
this will be sufficient to determine the propagation characteristics of directed waves.
For the case of a transversely isotropic composite material, the model problem can be
divided into the motions of symmetric and antisymmetric modes of Lamb wave
packets.

Summary and conclusions. The structural material under investigation is a
laminar composite consisting of several layers with a symmetric stacking sequence of
layers. For the purpose of modeling, the composite plate is simplified to an equivalent
homogeneous transversely isotropic material, with the x3-axis designated as the axis
of symmetry, which is a common and effective simplification for predicting overall
guided wave behavior. The theoretical analysis employs an analytical plane strain
model, which 1s sufficient and incurs no loss of generality for accurately determining
the propagation characteristics of the guided waves. A key conclusion is that for this
transversely isotropic composite material model, the overall wave propagation problem
can be effectively and cleanly separated into the motions of distinct symmetric and
antisymmetric modes of Lamb wave packets, confirming the utility of this modal
decomposition for both theoretical analysis and practical signal interpretation in non-
destructive evaluation. The model establishes a robust framework for relating material
properties, derived from standard mechanical tests, to the dispersive characteristics of

Lamb waves in multilayer composites.
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