
 

 Modern engineering and innovative technologies                                                                     Issue 18 / Part 1 

ISSN 2567-5273                                                                                                                                                                                   www.moderntechno.de 94 

http://www.moderntechno.de/index.php/meit/article/view/meit41-02-032 
DOI: 10.30890/2567-5273.2025-41-02-032 

UDC 699.88 

PROPAGATION OF SYMMETRIC AND ANTISYMMETRIC MODES IN 

MULTILAYER COMPOSITE PLATES  
Pysarenko A.M. 

c.ph.-m.s., as.prof. 
ORCID: 0000-0001-5938-4107 

Odessa State Academy of Civil Engineering and Architecture,  
Odessa, Didrihsona, 4, 65029 

 
Abstract. In this model, a single layer of a homogeneous isotropic elastic composite plate is 

described by dispersion relations of the following type symmetric and antisymmetric modes of Lamb 
waves.  The composite plate is modeled as a homogeneous transversely isotropic material with the 
x3-axis as the axis of symmetry. An analytical plane strain model can be considered without loss of 
generality and this will be sufficient to determine the propagation characteristics of directed waves. 
For the case of a transversely isotropic composite material, the model problem can be divided into 
the motions of symmetric and antisymmetric modes of Lamb wave packets. The standard laminar 
composite flaw detection technique includes a model delamination object in the form of a 
discontinuity with reduced bending stiffness in the delamination region. The reduction in bending 
stiffness in the delamination region can be explained by the separation of the laminate in this region 
into upper and lower sublayers, in which the waveguide is divided into two separate subwaveguides. 
The presence of a discontinuity can cause both reflected and transmitted waves from the 
delamination. However, in composite laminates, the scattering of Lamb waves at delaminations is a 
rather complex phenomenon. In this regard, it is necessary to evaluate the accuracy of the equivalent 
isotropic model in predicting the scattering characteristics of the Lamb A0 wave at delaminations in 
composite laminates. The method involves the analysis of the characteristics of scattered Lamb waves 
A0, which were obtained from a limited number of monitoring points by calculating the difference 
between the signal from the undamaged plate and the signal from the damaged plate.   

Key words: scattering, delamination, composite laminates, Lamb waves, transversely isotropic 
material, bending stiffness. 

Introduction. 

The utilization of composite materials, particularly in the form of multilayer 

plates, has become ubiquitous across various advanced engineering sectors, including 

aerospace, automotive, and civil infrastructure, driven by their exceptional strength-to-

weight ratio, high stiffness, and customizable mechanical properties. Ensuring the 

structural integrity and long-term reliability of these complex structures is paramount, 

necessitating robust and highly sensitive non-destructive evaluation techniques. 

Among the most effective methods for inspecting large-area, thin-walled composite 

structures is the use of guided waves, specifically Lamb waves, which can propagate 

over significant distances while remaining sensitive to various forms of damage such 

as delamination, cracks, and porosity. Lamb waves are elastic waves that travel within 
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a solid plate or shell and are governed by the plate boundaries, exhibiting distinct wave 

modes that are dispersive, meaning their speed depends on the frequency-thickness 

product. This characteristic dispersion, while complicating analysis, also provides a 

rich source of information for damage detection. The analysis of Lamb wave 

propagation in single-layer isotropic plates is a well-established field, characterized by 

two fundamental families of modes: symmetric modes, often denoted S0, which 

involve predominantly in-plane motion and symmetric displacement across the mid-

plane, and antisymmetric modes, denoted A0, which involve predominantly out-of-

plane motion and antisymmetric displacement across the mid-plane [1]. The S0 and A0 

modes are particularly important in non-destructive testing due to their low-frequency 

nature and ability to travel long distances with minimal attenuation. However, when 

moving from a single isotropic layer to a multilayer composite plate, the complexity of 

wave propagation increases significantly due to several factors. Firstly, the material 

properties within each layer are typically anisotropic, often exhibiting orthotropy or 

transverse isotropy, a direct result of the fiber reinforcement direction. Secondly, the 

interaction between layers through interfaces, which may involve perfect bonding or 

slight imperfections, introduces further complexity into the boundary conditions. 

Thirdly, the presence of multiple layers with potentially varying thicknesses and 

material orientations leads to a much larger number of possible wave modes, as the 

total number of modes in a multilayer structure is a superposition of the modes that 

could exist in each individual layer, coupled through the interface boundary conditions. 

Understanding the characteristics of these symmetric and antisymmetric modes in 

multilayer composite plates is thus a foundational requirement for successful guided 

wave inspection. The study of wave propagation in these complex media relies on 

sophisticated theoretical frameworks, primarily employing effective medium theories 

or, more commonly and accurately, the global matrix method, the transfer matrix 

method, or the stiffness matrix method, all of which solve the Christoffel equation 

subject to the boundary conditions at the free surfaces and the continuity conditions at 

the layer interfaces. These methods yield the dispersion relations such as equations 

linking wave frequency, phase velocity, and group velocity that are essential for 
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predicting wave behavior and for interpreting experimental results. The symmetric and 

antisymmetric classification, which is straightforward for a single isotropic layer, must 

be carefully considered for multilayer composites [2]. If the plate as a whole is 

structurally and materially symmetric with respect to its mid-plane (i.e., a laminate with 

a symmetric stacking sequence and symmetric properties), the wave modes can still be 

rigorously classified as symmetric or antisymmetric with respect to the mid-plane 

displacement and stress profiles. However, in the case of unsymmetric laminates, 

where the stacking sequence or material properties are not mirrored across the mid-

plane, the wave motion generally becomes coupled, meaning the concepts of purely 

symmetric and purely antisymmetric modes no longer strictly apply. Instead, the modes 

exhibit mixed characteristics, though they are often still loosely referred to as quasi-

symmetric or quasi-antisymmetric based on the dominant displacement component. 

The practical application of guided waves in composite inspection is critically 

dependent on accurately predicting the behavior of these modes. For instance, the A0 

mode, characterized by its low phase velocity at low frequencies, is often highly 

sensitive to delamination and out-of-plane defects due to its significant out-of-plane 

displacement component, while the S0 mode is often more sensitive to in-plane defects 

like fiber breaks or matrix cracks. The ability to select the optimal excitation frequency 

and mode type is crucial for maximizing defect detection probability and minimizing 

inspection time. Furthermore, the strong dispersion exhibited by the higher-order 

modes in multilayer composites means that a wave pulse, composed of multiple 

frequencies, will spread out as it propagates, which can complicate signal analysis and 

time-of-flight measurements, necessitating the use of advanced signal processing 

techniques such as the wavelet transform or two-dimensional Fourier transform to 

isolate individual modes. Research in this field is continually advancing, focusing on 

developing more efficient and accurate numerical models, understanding the effects of 

material damping and viscoelasticity on propagation, and, most importantly, modeling 

the complex interaction and scattering of these wave modes with various types of 

damage that are characteristic of multilayer composite structures. The fundamental 

theoretical understanding of symmetric and antisymmetric mode propagation in these 
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complex, anisotropic media remains the bedrock upon which all practical non-

destructive evaluation strategies for multilayer composite plates are built. The pursuit 

of an accurate and efficient theoretical framework for predicting these dispersive 

characteristics is essential for the future development of reliable structural health 

monitoring systems for these ubiquitous high-performance materials. 

Dispersion relations of the following type symmetric and antisymmetric 

modes 

The zero-crossing algorithm assumes the possibility of decomposing the 

measured signals ui(t) at different distances into a set of signals with a limited 

bandwidth uik(t). Such a procedure becomes possible provided that the signals ui(t) are 

filtered using bandpass filters with a narrower bandwidth than the bandwidth of the 

incident spectrum. 

At the next step for each filtered signal uik(t) the delay times timk and t(i+1)mk are 

estimated. In this way, the phase velocities cpmk and frequencies fmk are calculated. 

Then, the obtained sets (fmk. cpmk) can be represented as segments of the phase velocity 

dispersion curve. 

Each section of the dispersion curve obtained using one of the filters can be 

reconstructed in a relatively narrow passband. In addition, scanning the filter's central 

frequency in wide frequency ranges will allow covering a large part of the falling 

spectrum. 

The frequency spectrum of two adjacent signals can be represented as 

( ) ( )[ ]tuFTfU ii = .                                                      (1) 

( ) ( )[ ]tuFTfU ii 11 ++ = .                                                  (2) 

where ui(t) is the signal measured at distance xi(t); 

          ui+1(t) is the signal measured at distance xi+1(t); 

FT is the Fourier transform. 

 Adjacent bands of the frequency spectra are filtered by k Gaussian bandpass 

filters with predetermined parameters 

( ) ( ) ( )fBfUfU kiik ⋅= .                                                (3) 
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( ) ( ) ( )fBfUfU kiki ⋅= ++ 1)1|( .                                           (4) 

where the frequency response of k-th bandpass filter is 

( ) ( ) ( )[ ]{ }22 15.0ln4exp dfkffBfB Lk −−−⋅∆⋅= − .    Kk ,...,2,1= .          (5) 

where fL is the left frequency filter edge; 

fH is the central part of frequency filter edge; 

∆B is the filter bandwidth; 

the frequency domain df is 

1−
−

=
K

ffdf LH .                                                     (6) 

The signal reconstruction using the Fourier transform has the following form 

 ( ) ( )[ ]fUFTtu ikik
1−= .                                            (7) 

( ) ( )[ ]fUFTtu kiki )1(
1

)1\( +
−

+ = .                                     (8) 

At the next stage of the numerical method. the phase velocity can be estimated 

according to the following relation 

imkmki

ii
pmk tt

xxc
−
−

=
+

+

)1(

1 .                                          (9) 

Using the data on the duration of the half-periods of the first signal, it is possible 

to estimate the equivalent frequencies to which the calculated values of the phase 

velocity should be assigned 

imkkmi
imk tt

f
−

=
+ )1(

5.0
.                                      (10) 

Comparison of the results obtained using the proposed hybrid method and the 

previous version of the reference zero-crossing method showed that the zero-crossing 

method recovers the phase velocity dispersion curve in the frequency range of 286–

319 kHz. This bandwidth is only 8% of the original signal bandwidth. 

Meanwhile, the proposed spectrum decomposition approach allows us to recover 

the phase velocity dispersion curve in a significantly wider frequency range. This range 

covers almost the entire bandwidth of the incident Lamb wavelet signal. t should be 

noted that the frequency ranges in which the dispersion curve is reconstructed depend 
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significantly on the bandwidth of the filters used in the spectrum decomposition 

approach. 

For example, for the 120 kHz filter, 70% coverage of the incident signal 

bandwidth was achieved. Finally, the best results were achieved with the narrowest 

filter (40 kHz bandwidth). For this narrowed filter, the reconstructed dispersion curve 

covers 90% of the original bandwidth. 

In summary, it can be argued that narrow filters are more efficient, but this leads 

to a large number of filters, which generates more computational resources and longer 

processing times. 

Typical B-scan results for the propagation of the A0 Lamb wave mode in a 2 

mm thick laminated composite sample are presented in Table 1.  
 

Table 1 - Dispersion dependences for A0 mode of the Lamb wave 

A-band B-band C-band 
f, kHz A′ F, kHz A′ F, kHz A′ 

15.9304 0.0152 157.2193 0.5169 304.7936 0.5203 
25.3012 0.0338 158.1551 0.4882 311.3182 0.5458 
34.6720 0.1083 162.8342 0.5017 318.7750 0.5085 
41.2316 0.2183 170.3209 0.4595 322.5033 0.5864 
47.7912 0.2470 176.8717 0.5456 328.0959 0.6661 
58.0991 0.2369 185.2941 0.5253 327.1638 0.7322 
62.7845 0.3063 187.1658 0.6284 333.6884 0.6898 
61.8474 0.4856 195.5882 0.7128 341.1451 0.7254 
69.3440 0.6125 199.3316 0.7010 343.9414 0.6644 
74.0295 0.4399 199.3316 0.7517 347.6698 0.5458 
78.7149 0.3012 203.0749 0.7973 356.9907 0.5746 
85.2744 0.4467 209.6257 0.7720 361.6511 0.6085 
87.1486 0.5330 213.3690 0.7483 364.4474 0.5339 
89.9598 0.6261 213.3690 0.8142 363.5153 0.4864 
96.5194 0.5753 217.1123 0.8953 362.5832 0.3814 

104.0161 0.7547 218.9840 0.9865 366.3116 0.2712 
111.5127 0.5381 233.0214 0.8666 377.4967 0.1780 
113.3869 0.6819 237.7005 0.6791 387.7497 0.1051 
115.2610 0.7902 246.1230 0.7500 399.8668 0.1322 
122.7577 0.9306 248.9305 0.8497 411.9840 0.1797 
126.5060 0.8190 254.5455 0.9662 424.1012 0.1102 
136.8139 0.7580 263.9037 0.9578 430.6258 0.0678 
143.3735 0.7733 266.7112 0.8868 441.8109 0.1186 
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The dispersion curve data for the relative amplitude are divided into three ranges: A-

band (0 - 150 kHz). B-band (150-300 kHz) and C-band (300-500 kHz). 

In this model, a single layer of a homogeneous isotropic elastic composite plate is 

described by dispersion relations of the following type symmetric and antisymmetric 

modes of Lamb waves 

( ) ( ) ( ) ( ) ( ) 0coshsinh4sinhcosh2 2121
2

21
22

2
2 =−− HHkHHkk ηηηηηη .   (11) 

Accordingly, for antisymmetric modes of Lamb waves, the equation can be 

modified as follows 

( ) ( ) ( ) ( ) ( ) 0sinhcosh4coshsinh2 2121
2

21
22

2
2 =−− HHkHHkk ηηηηηη ,   (12) 

where 

22
jj kk −=η ,   

j
j c

k ω
= ,    2,1=j ,                         (13) 

k = ω/c is the angular wavenumber; 

H is half the thickness of the composite sample; 

c1 is the P-wave velocity for lamina composite material; 

c2 is the S-wave velocity for lamina composite material. 

The working fluid for the model calculation experiment was a laminar composite 

consisting of several layers with the stacking sequence [00/450/00/450]s. The composite 

plate is modeled as a homogeneous transversely isotropic material with the x3-axis as 

the axis of symmetry. 

Young's modulus E22 can be determined from the results of a standard uniaxial 

tensile test in the x2 direction. In addition, a stress-strain curve is plotted from the tensile 

test results. Poisson's ratio ν12 in the 1-2 plane is determined from the same test by 

measuring the strains in both the x1 and x2 directions. The shear modulus G23 and the 

elastic constant E33 for the composite face sheet are determined from the equations 

ρυ 2
2323 =G ,                                                 (14) 

( )
( ) 2

11
2
131222

2
111222

33 21
1

υνρν
υνρ

+−
−

=
E

EE ,                             (15) 

where  υ11 is the longitudinal wave velocity; 
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υ23 is the shear wave velocity; 

An analytical plane strain model can be considered without loss of generality and 

this will be sufficient to determine the propagation characteristics of directed waves. 

For the case of a transversely isotropic composite material, the model problem can be 

divided into the motions of symmetric and antisymmetric modes of Lamb wave 

packets.  

Summary and conclusions. The structural material under investigation is a 

laminar composite consisting of several layers with a symmetric stacking sequence of 

layers. For the purpose of modeling, the composite plate is simplified to an equivalent 

homogeneous transversely isotropic material, with the x3-axis designated as the axis 

of symmetry, which is a common and effective simplification for predicting overall 

guided wave behavior. The theoretical analysis employs an analytical plane strain 

model, which is sufficient and incurs no loss of generality for accurately determining 

the propagation characteristics of the guided waves. A key conclusion is that for this 

transversely isotropic composite material model, the overall wave propagation problem 

can be effectively and cleanly separated into the motions of distinct symmetric and 

antisymmetric modes of Lamb wave packets, confirming the utility of this modal 

decomposition for both theoretical analysis and practical signal interpretation in non-

destructive evaluation. The model establishes a robust framework for relating material 

properties, derived from standard mechanical tests, to the dispersive characteristics of 

Lamb waves in multilayer composites. 
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