INTELLIGENT ANALYSIS OF AUTOMATED WEB APPLICATION TESTING LOGS: THE LIPSI METHOD
DOI:
https://doi.org/10.30890/2567-5273.2025-41-01-022Keywords:
intelligent log analysis, automated testing, bug classification, logistic regression, dynamic weight modeling, log files, LIPSI, defect prioritization, artificial intelligence in testing, test result analysis.Abstract
Automated testing of web applications is a crucial aspect of modern software quality assurance processes, especially in large and complex projects where hundreds or even thousands of scenarios must be verified within tight timeframes. One of the criticalReferences
Landauer M., Wüchner T., Reuter C., et al. Deep Learning for Anomaly Detection in Log Data: A Survey // Computers & Security. – 2023. – Vol. 131. – DOI: https://doi.org/10.1016/j.cose.2023.103263
Khan Z.A., et al. Impact of Log Parsing on Deep Learning-based Anomaly Detection // Empirical Software Engineering. – 2024. – Vol. 29. – DOI: https://doi.org/10.1007/s10664-024-10533-w
Duan Y., Zhang S., Wang Q., Zhao H. Log Anomaly Detection via Evidential Deep Learning (LogEDL) // Applied Sciences. – 2024. – Vol. 14, No. 16. – DOI: https://doi.org/10.3390/app14167055
Mäntylä M., Wang Y., Nyyssölä J. LogLead: Fast and Integrated Log Loader, Enhancer, and Anomaly Detector // arXiv preprint. – 2023. – URL: https://arxiv.org/abs/2311.11809
Liu J., Huang J., Huo Y., Jiang Z., Gu J., Chen Z., Feng C., Lyu M. Log-based Anomaly Detection Based on EVT Theory with Feedback // arXiv preprint. – 2023. – URL: https://arxiv.org/abs/2306.05032
Biehl M. Fundamentals of Machine Learning. – Cham: Springer Nature, 2023. – 316 с. – ISBN: 978-3-031-35770-2
Arora S., Gupta A. Hands-On Exploratory Data Analysis with Python. – Birmingham: Packt Publishing, 2023. – 402 с. – ISBN: 978-1-80461-619-2
Zhang S., Duan Y. Modern Log Analytics and Anomaly Detection. – Singapore: Springer, 2024. – 228 с. – ISBN: 978-981-99-6147-2
Sawhney R. Practical MLOps for DevOps Engineers. – Birmingham: Packt Publishing, 2023. – 342 с. – ISBN: 978-1-80324-845-5.
Kotsiantis S., Kanellopoulos D., Pintelas P. Fundamentals of Machine Learning: A Practical Approach. – London: Springer, 2023. – 289 с. – ISBN: 978-3-031-34123-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.



