INTELLIGENT ANALYSIS OF AUTOMATED WEB APPLICATION TESTING LOGS: THE LIPSI METHOD

Authors

DOI:

https://doi.org/10.30890/2567-5273.2025-41-01-022

Keywords:

intelligent log analysis, automated testing, bug classification, logistic regression, dynamic weight modeling, log files, LIPSI, defect prioritization, artificial intelligence in testing, test result analysis.

Abstract

Automated testing of web applications is a crucial aspect of modern software quality assurance processes, especially in large and complex projects where hundreds or even thousands of scenarios must be verified within tight timeframes. One of the critical

References

Landauer M., Wüchner T., Reuter C., et al. Deep Learning for Anomaly Detection in Log Data: A Survey // Computers & Security. – 2023. – Vol. 131. – DOI: https://doi.org/10.1016/j.cose.2023.103263

Khan Z.A., et al. Impact of Log Parsing on Deep Learning-based Anomaly Detection // Empirical Software Engineering. – 2024. – Vol. 29. – DOI: https://doi.org/10.1007/s10664-024-10533-w

Duan Y., Zhang S., Wang Q., Zhao H. Log Anomaly Detection via Evidential Deep Learning (LogEDL) // Applied Sciences. – 2024. – Vol. 14, No. 16. – DOI: https://doi.org/10.3390/app14167055

Mäntylä M., Wang Y., Nyyssölä J. LogLead: Fast and Integrated Log Loader, Enhancer, and Anomaly Detector // arXiv preprint. – 2023. – URL: https://arxiv.org/abs/2311.11809

Liu J., Huang J., Huo Y., Jiang Z., Gu J., Chen Z., Feng C., Lyu M. Log-based Anomaly Detection Based on EVT Theory with Feedback // arXiv preprint. – 2023. – URL: https://arxiv.org/abs/2306.05032

Biehl M. Fundamentals of Machine Learning. – Cham: Springer Nature, 2023. – 316 с. – ISBN: 978-3-031-35770-2

Arora S., Gupta A. Hands-On Exploratory Data Analysis with Python. – Birmingham: Packt Publishing, 2023. – 402 с. – ISBN: 978-1-80461-619-2

Zhang S., Duan Y. Modern Log Analytics and Anomaly Detection. – Singapore: Springer, 2024. – 228 с. – ISBN: 978-981-99-6147-2

Sawhney R. Practical MLOps for DevOps Engineers. – Birmingham: Packt Publishing, 2023. – 342 с. – ISBN: 978-1-80324-845-5.

Kotsiantis S., Kanellopoulos D., Pintelas P. Fundamentals of Machine Learning: A Practical Approach. – London: Springer, 2023. – 289 с. – ISBN: 978-3-031-34123-7

Published

2025-10-30

How to Cite

Ліпський, Д. (2025). INTELLIGENT ANALYSIS OF AUTOMATED WEB APPLICATION TESTING LOGS: THE LIPSI METHOD. Modern Engineering and Innovative Technologies, 1(41-01), 161–176. https://doi.org/10.30890/2567-5273.2025-41-01-022

Issue

Section

Articles