ANALYTICALLY CONTINUOUS FUNCTIONS FOR COMPUTING THE ARGUMENT OF A COMPLEX NUMBER
DOI:
https://doi.org/10.30890/2567-5273.2025-41-01-023Keywords:
argument computation, atan2, Atan4, inverse trigonometric functions, symbolic computation, phase analysis, branchless algorithms, SIMD vectorization.Abstract
Computing the argument of a complex number is fundamental to signal processing, navigation, and computational geometry. The standard atan2 function, while numerically efficient, produces cumbersome piecewise expressions in symbolic computation systems, coDownloads
Published
2025-10-30
How to Cite
Лукін, К., & Коновалов, В. (2025). ANALYTICALLY CONTINUOUS FUNCTIONS FOR COMPUTING THE ARGUMENT OF A COMPLEX NUMBER. Modern Engineering and Innovative Technologies, 1(41-01), 11–22. https://doi.org/10.30890/2567-5273.2025-41-01-023
Issue
Section
Articles
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.



