COMPREHENSIVE EVALUATION OF METROLOGICAL CHARACTERISTICS IN TENSIOMETRIC STUDIES OF GAS DISTRIBUTION MECHANISMS IN TRANSPORT ENERGY INSTALLATIONS
DOI:
https://doi.org/10.30890/2567-5273.2025-41-02-034Keywords:
Strain gauge measurements, metrological characteristics, gas distribution mechanism, transport power plants, measurement error.Abstract
The article discusses the issue of improving the reliability of strain gauge measurements in the study of gas distribution mechanisms in transport power plants. The main factors affecting measurement errors are identified, the characteristics of strain gaReferences
Hu B., Li Y., Yin L. (2024). Theoretical and experimental analysis of dynamic characteristics for a valve train system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 21 (19), 6328. https://doi.org/10.3390/s21196328
Xiang L., Zhongkai Z., Jiaxing W., Meng W., Tao L., Yantao L., Qing T., Rui Q., Zhaojun L., Bian T. (2025). Future development directions of high-temperature strain gauges: a comprehensive review of structure and performance characteristics. Nanoscale Advances, Issue 14, 7, 4232-4251. https://doi.org/10.1039/D5NA00039D
Santamaría L., Vega M., Garcia D.M., Argüelles D.K., Oro J. (2024). Different calibration methods for a three-component strain gauge balance to measure aerodynamic forces on airfoils. Sensors and Actuators A Physical, 374, 115511. DOI: 10.1016/j.sna.2024.115511
Prato A., Improta A., Di Lernia M., Nobile S., Facello A., Mazzoleni F., Germak A., Schiavi A. (2024). Static, continuous and dynamic calibration of force transducers: A comparative study on a low-force strain-gauge measuring device. Measurement: Sensors, 38, 101337. https://doi.org/10.1016/j.measen.2024.101337
Wang Q., Wu W., Zhao Y., Cheng Y., Liu L., Yan K. (2024). Design and research of a strain elastic element with a double-layer cross floating beam for strain gauge wireless rotating dynamometers. Micromachines, 15, 857. https://doi.org/10.3390/mi15070857
Логвіненко О.А. (2024). Особливості методичного підходу до дослідження динаміки механізму газорозподілу транспортних енергетичних установок. SWorldJournal, Issue №24, Part 1, 144–150. https://doi.org/10.30888/2663-5712.2024-24-00-011
Shahnawaz S., Mufti R.A., Ali M.A., Uz Zaman U.K., Baqai A.A., Zahid R., Aslam J., Bhutta M.U. (2025). A comprehensive review of experimental methods for the tribological evaluation of internal combustion engine valve-train. ASME Journal of Tribology, 148(2), 020801. https://doi.org/10.1115/1.4069031
U.S. Patent No. US20230234567A1. (2023). Valvetrain testing using instrumented pushrod and strain gauge integration. U.S. Patent and Trademark Office. https://patents.google.com/patent/US20230213325A1/fr
References.
Hu B., Li Y., Yin L. Theoretical and experimental analysis of dynamic characteristics for a valve train system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2024. 21 (19). 6328. https://doi.org/10.3390/s21196328
Xiang L., Zhongkai Z., Jiaxing W., Meng W., Tao L., Yantao L., Qing T., Rui Q., Zhaojun L., Bian T. Future development directions of high-temperature strain gauges: a comprehensive review of structure and performance characteristics. Nanoscale Advances. 2025. Issue 14. 7. 4232-4251. https://doi.org/10.1039/D5NA00039D
Santamaría L., Vega M., Garcia D.M., Argüelles D.K., Oro J. Different calibration methods for a three-component strain gauge balance to measure aerodynamic forces on airfoils. Sensors and Actuators A Physical. 2024. 374. 115511. DOI: 10.1016/j.sna.2024.115511
Prato A., Improta A., Di Lernia M., Nobile S., Facello A., Mazzoleni F., Germak A., Schiavi A. Static, continuous and dynamic calibration of force transducers: A comparative study on a low-force strain-gauge measuring device. Measurement: Sensors. 2024. 38. 101337. https://doi.org/10.1016/j.measen.2024.101337
Wang Q., Wu W., Zhao Y., Cheng Y., Liu L., Yan K. Design and research of a strain elastic element with a double-layer cross floating beam for strain gauge wireless rotating dynamometers. Micromachines. 2024. 15. 857. https://doi.org/10.3390/mi15070857
Lohvinenko O.A. Osoblyvosti metodychnoho pidkhodu do doslidzhennia dynamiky mekhanizmu hazorozpodilu transportnykh enerhetychnykh ustanovok [Features of the methodological approach to studying the dynamics of the gas distribution mechanism of transport power plants]. SWorldJournal. 2024. Issue №24. Part 1. 144–150. https://doi.org/10.30888/2663-5712.2024-24-00-011
Shahnawaz S., Mufti R.A., Ali M.A., Uz Zaman U.K., Baqai A.A., Zahid R., Aslam J., Bhutta M.U. A comprehensive review of experimental methods for the tribological evaluation of internal combustion engine valve-train. ASME Journal of Tribology. 2025. 148(2). 020801. https://doi.org/10.1115/1.4069031
U.S. Patent No. US20230234567A1. Valvetrain testing using instrumented pushrod and strain gauge integration. U.S. Patent and Trademark Office. 2023. https://patents.google.com/patent/US20230213325A1/fr
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.



