COMPREHENSIVE EVALUATION OF METROLOGICAL CHARACTERISTICS IN TENSIOMETRIC STUDIES OF GAS DISTRIBUTION MECHANISMS IN TRANSPORT ENERGY INSTALLATIONS

Authors

DOI:

https://doi.org/10.30890/2567-5273.2025-41-02-034

Keywords:

Strain gauge measurements, metrological characteristics, gas distribution mechanism, transport power plants, measurement error.

Abstract

The article discusses the issue of improving the reliability of strain gauge measurements in the study of gas distribution mechanisms in transport power plants. The main factors affecting measurement errors are identified, the characteristics of strain ga

References

Hu B., Li Y., Yin L. (2024). Theoretical and experimental analysis of dynamic characteristics for a valve train system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 21 (19), 6328. https://doi.org/10.3390/s21196328

Xiang L., Zhongkai Z., Jiaxing W., Meng W., Tao L., Yantao L., Qing T., Rui Q., Zhaojun L., Bian T. (2025). Future development directions of high-temperature strain gauges: a comprehensive review of structure and performance characteristics. Nanoscale Advances, Issue 14, 7, 4232-4251. https://doi.org/10.1039/D5NA00039D

Santamaría L., Vega M., Garcia D.M., Argüelles D.K., Oro J. (2024). Different calibration methods for a three-component strain gauge balance to measure aerodynamic forces on airfoils. Sensors and Actuators A Physical, 374, 115511. DOI: 10.1016/j.sna.2024.115511

Prato A., Improta A., Di Lernia M., Nobile S., Facello A., Mazzoleni F., Germak A., Schiavi A. (2024). Static, continuous and dynamic calibration of force transducers: A comparative study on a low-force strain-gauge measuring device. Measurement: Sensors, 38, 101337. https://doi.org/10.1016/j.measen.2024.101337

Wang Q., Wu W., Zhao Y., Cheng Y., Liu L., Yan K. (2024). Design and research of a strain elastic element with a double-layer cross floating beam for strain gauge wireless rotating dynamometers. Micromachines, 15, 857. https://doi.org/10.3390/mi15070857

Логвіненко О.А. (2024). Особливості методичного підходу до дослідження динаміки механізму газорозподілу транспортних енергетичних установок. SWorldJournal, Issue №24, Part 1, 144–150. https://doi.org/10.30888/2663-5712.2024-24-00-011

Shahnawaz S., Mufti R.A., Ali M.A., Uz Zaman U.K., Baqai A.A., Zahid R., Aslam J., Bhutta M.U. (2025). A comprehensive review of experimental methods for the tribological evaluation of internal combustion engine valve-train. ASME Journal of Tribology, 148(2), 020801. https://doi.org/10.1115/1.4069031

U.S. Patent No. US20230234567A1. (2023). Valvetrain testing using instrumented pushrod and strain gauge integration. U.S. Patent and Trademark Office. https://patents.google.com/patent/US20230213325A1/fr

References.

Hu B., Li Y., Yin L. Theoretical and experimental analysis of dynamic characteristics for a valve train system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2024. 21 (19). 6328. https://doi.org/10.3390/s21196328

Xiang L., Zhongkai Z., Jiaxing W., Meng W., Tao L., Yantao L., Qing T., Rui Q., Zhaojun L., Bian T. Future development directions of high-temperature strain gauges: a comprehensive review of structure and performance characteristics. Nanoscale Advances. 2025. Issue 14. 7. 4232-4251. https://doi.org/10.1039/D5NA00039D

Santamaría L., Vega M., Garcia D.M., Argüelles D.K., Oro J. Different calibration methods for a three-component strain gauge balance to measure aerodynamic forces on airfoils. Sensors and Actuators A Physical. 2024. 374. 115511. DOI: 10.1016/j.sna.2024.115511

Prato A., Improta A., Di Lernia M., Nobile S., Facello A., Mazzoleni F., Germak A., Schiavi A. Static, continuous and dynamic calibration of force transducers: A comparative study on a low-force strain-gauge measuring device. Measurement: Sensors. 2024. 38. 101337. https://doi.org/10.1016/j.measen.2024.101337

Wang Q., Wu W., Zhao Y., Cheng Y., Liu L., Yan K. Design and research of a strain elastic element with a double-layer cross floating beam for strain gauge wireless rotating dynamometers. Micromachines. 2024. 15. 857. https://doi.org/10.3390/mi15070857

Lohvinenko O.A. Osoblyvosti metodychnoho pidkhodu do doslidzhennia dynamiky mekhanizmu hazorozpodilu transportnykh enerhetychnykh ustanovok [Features of the methodological approach to studying the dynamics of the gas distribution mechanism of transport power plants]. SWorldJournal. 2024. Issue №24. Part 1. 144–150. https://doi.org/10.30888/2663-5712.2024-24-00-011

Shahnawaz S., Mufti R.A., Ali M.A., Uz Zaman U.K., Baqai A.A., Zahid R., Aslam J., Bhutta M.U. A comprehensive review of experimental methods for the tribological evaluation of internal combustion engine valve-train. ASME Journal of Tribology. 2025. 148(2). 020801. https://doi.org/10.1115/1.4069031

U.S. Patent No. US20230234567A1. Valvetrain testing using instrumented pushrod and strain gauge integration. U.S. Patent and Trademark Office. 2023. https://patents.google.com/patent/US20230213325A1/fr

Published

2025-10-30

How to Cite

Логвіненко, О. (2025). COMPREHENSIVE EVALUATION OF METROLOGICAL CHARACTERISTICS IN TENSIOMETRIC STUDIES OF GAS DISTRIBUTION MECHANISMS IN TRANSPORT ENERGY INSTALLATIONS. Modern Engineering and Innovative Technologies, 2(41-02), 31–41. https://doi.org/10.30890/2567-5273.2025-41-02-034

Issue

Section

Articles