СУБ-ТГЦ И ТГЦ НЕУСТОЙЧИВОСТЬ ТОКА В ПОЛУПРОВОДНИКОВЫХ АВТОКОЛЕБАТЕЛЬНЫХ ЛАВИННЫХ ДИОДАХ
DOI:
https://doi.org/10.30890/2567-5273.2025-37-01-033Ключові слова:
ТГц і суб-ТГц коливання, нестабільність струму в автоколивальному лавинному діоді, хаотична нестабільність, радарАнотація
Сьогодні найпоширеніший спосіб отримання ТГц джерела базується на множенні частоти мікрохвильових сигналів або на змішуванні частот двох лазерів для отримання ТГц сигналу як різниці двох оптичних частот. Розробка автогенератора в ТГц діапазоні частот є скMetrics
Посилання
Lukin K.A., Cerdeira H.A, Colavita A.A. Chaotic instability of currents in a reverse biased multilayered structure // Applied Physics Letters, 1997. v.71, No. 17, pp.2484-2486. DOI:10.1063/1.120095
Lukin K.A., Cerdeira H.A., and Maksymov P.P. Self-oscillations in reverse biased p-n junction with current injection // Applied Physics Letters, 2003, v. 83, p.4643. DOI:10.1063/1.1627939
Lukin K.A., Cerdeira H.A., and Maksymov P.P. Terahertz self-oscillations in avalanche p-n-junction with DC current injection // Proc. of 6th Int. Kharkov Symp. on Physics and Engineering of Microwaves, MMW& SubMMW (MSMW'7), June 25-30, 2007, Kharkov, Ukraine (Kharkov, 2007), V. I, pp. 204-206.
Lukin K.A. and Maksymov P.P. Terahertz self-oscillations in the injection p-n-junction with fixed reverse bias // Radioelectronics and Communications Systems, 2010, V. 53, No. 8, pp. 405-411. Allerton Press, Inc.
DOI:10.3103/S0735272710080029
Lukin K. A., Maksymov P.P., Cerdeira H.A. Photoelectron multipliers based on avalanche pn-i-pn structures // The European Physical Journal - special Topics Heidelberg: Springer Heidelberg, 2014, v. 223, n.13, pp. 2989-2999, http://hdl.handle.net/11449/117206
Al-Khalidi, A.; Alharbi, K.H.; Wang, J.; Morariu, R.; Wang, L.; Khalid, A.; Figueiredo, J.M.L.; Wasige, E. Resonant tunneling diode terahertz sources with up to 1 mW output power in the J-band // IEEE Trans. Terahertz Sci. Technol. 2020, 10, pp.150–157.
Izumi, R.; Sato, T.; Suzuki, S.; Asada, M. Resonant-tunneling-diode terahertz oscillator with a cylindrical cavity for high-frequency oscillation // AIP Adv. 2019, v.9, 085020.
Kobayashi, K.; Suzuki, S.; Han, F.; Tanaka, H.; Fujikata, H.; Asada, M. Analysis of a high-power resonant-tunneling-diode terahertz oscillator integrated with a rectangular cavity resonator // Jpn. J. Appl. Phys. 2020, v.59, no.5, 050907, DOI:10.35848/1347-4065/ab8b40.
Miyamoto, T.; Yamaguchi, A.; Mukai, T. Terahertz imaging system with resonant tunneling diodes // Jpn. J. Appl. Phys. 2016, v.55, 032201.
Okamoto, K.; Tsuruda, K.; Diebold, S.; Hisatake, S.; Fujita, M.; Nagatsuma, T // Terahertz sensor using photonic crystal cavity and resonant tunneling diodes. J. Infrared Millime. Terahertz Waves 2017, 38, 1085–1097.
Yamashita, G.; Tsujita,W.; Tsutada, H.; Ma, R.;Wang, P.; Orlik, P.V.; Suzuki, S.; Dobroiu, A.; Asada, M. Terahertz polarimetric Sensing for linear encoder based on resonant-tunneling-diode and CFRP polarizing // In Proc. of the Int. Conference on Infrared, Millimeter, and Terahertz Waves, Paris, France, 1–6 September 2019. Abstract No. 4429649.
Asada, M.; Suzuki, S. THz oscillators using resonant tunneling diodes and their functions for various applications // In Proc. of the Workshop in European Microwave Week, Nuremberg, Germany, 8–13 October 2017. Abstract No. WTu-01.
Oshima, N.; Hashimoto, K.; Suzuki, S.; Asada, M. Terahertz wireless data transmission with frequency and polarization division multiplexing using resonant-tunneling-diode oscillators // IEEE Trans. Terahertz Sci. Technol. 2017, 7, 593–598.
Wasige, E. Over 10 Gbps mm-wave and THz wireless links // In Proc. of the Workshop in European Microwave Week, Madrid, Spain, 25–27 September 2018. Abstract No. WTh04-03.
Diebold, S.; Nishio, K.; Nishida, Y.; Kim, J.; Tsuruda, K.; Mukai, T.; Fujita,M.; Nagatsuma, T. High-speed error-free wireless data transmission using a terahertz resonant tunneling diode transmitter and receiver // Electron. Lett. 2016, v.52, 1999–2001.
Dobroiu, A.; Wakasugi, R.; Shirakawa, Y.; Suzuki, S.; Asada, M. Absolute and precise terahertz-wave radar based on an amplitude-modulated resonant-tunneling-diode oscillator // Photonics 2018, 5, 52.
Dobroiu, A.; Wakasugi, R.; Shirakawa, R.; Suzuki, S.; Asada, M. Amplitude-modulated continuous-wave radar in the terahertz range using lock-in phase measurement // Meas. Sci. Technol. 2020, 31, 105001.
Dobroiu, A.; Shirakawa, Y.; Suzuki, S.; Asada, M.; Ito, H. Subcarrier frequency-modulated continuous-wave radar in the terahertz range based on a resonant-tunneling-diode oscillator // Sensors 2020, 20, 6848.
Konno, H.; Dobroiu, A.; Suzuki, S.; Asada, M.; Ito, H. OCT technique for distance measurement using an RTD terahertz oscillator // In Proc. of the Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Buffalo, NY, USA, 8–13 Nov. 2020.
Lukin, K. A. "Millimeter wave noise radar technology," Third Int. Kharkov Symposium 'Physics and Engineering of Millimeter and Submillimeter Waves'. MSMW'98. Symposium Proceedings (Cat. No.98EX119), Kharkov, Ukraine, 1998, vol. I, pp.94-97, DOI:10.1109/MSMW.1998.758919.
Lukin, K.A. Noise Radar Technology // Telecommunications and Radio Engineering, Dec.2001, v.55, no.12, pp.8-16.
Yurchenko V. and Yurchenko L. Time-Domain Simulation of Microstrip-Connected Solid-State Oscillators for Close-Range Noise Radar Applications // in the book: “Oscillators - Recent Developments”. Edited by: Dr. Patrice Salzenstein, 2019, p.108. Chapter 4, pp.1-22. DOI:10.5772/intechopen.81865. ISBN 978-953-51-6882-9. Print ISBN: 978-1-78985-837-2. eBook (PDF) ISBN: 978-1-83881-068-9. https://doi.org/10.5772/intechopen.81865.
Lukin,K.A., Maistrenko, Yu.L., Sharkovsky, A.N., Shestopalov, V.P. Method of Difference Equations in the Resonator Problem with Nonlinear Reflector // Sov. Phys. Dokl, V.34, No 11, Nov. 1989, pp.977-979, American Institute of Physics.
Lukin K. A. Initial-boundary value problems for linear equations of electrodynamics with nonlinear boundary conditions. Journal of Physics: Conference Series, v. 346 (2012) 012013.
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Автори

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.